Prospective respiratory-gated micro-CT of free breathing rodents.

نویسندگان

  • Nancy L Ford
  • Hristo N Nikolov
  • Chris J D Norley
  • Michael M Thornton
  • Paula J Foster
  • Maria Drangova
  • David W Holdsworth
چکیده

Microcomputed tomography (Micro-CT) has the potential to noninvasively image the structure of organs in rodent models with high spatial resolution and relatively short image acquisition times. However, motion artifacts associated with the normal respiratory motion of the animal may arise when imaging the abdomen or thorax. To reduce these artifacts and the accompanying loss of spatial resolution, we propose a prospective respiratory gating technique for use with anaesthetized, free-breathing rodents. A custom-made bed with an embedded pressure chamber was connected to a pressure transducer. Anaesthetized animals were placed in the prone position on the bed with their abdomens located over the chamber. During inspiration, the motion of the diaphragm caused an increase in the chamber pressure, which was converted into a voltage signal by the transducer. An output voltage was used to trigger image acquisition at any desired time point in the respiratory cycle. Digital radiographic images were acquired of anaesthetized, free-breathing rats with a digital radiographic system to correlate the respiratory wave form with respiration-induced organ motion. The respiratory wave form was monitored and recorded simultaneously with the x-ray radiation pulses, and an imaging window was defined, beginning at end expiration. Phantom experiments were performed to verify that the respiratory gating apparatus was triggering the micro-CT system. Attached to the distensible phantom were 100 microm diameter copper wires and the measured full width at half maximum was used to assess differences in image quality between respiratory-gated and ungated imaging protocols. This experiment allowed us to quantify the improvement in the spatial resolution, and the reduction of motion artifacts caused by moving structures, in the images resulting from respiratory-gated image acquisitions. The measured wire diameters were 0.135 mm for the stationary phantom image, 0.137 mm for the image gated at end deflation, 0.213 mm for the image gated at peak inflation, and 0.406 mm for the ungated image. Micro-CT images of anaesthetized, free-breathing rats were acquired with a General Electric Healthcare eXplore RS in vivo micro-CT system. Images of the thorax were acquired using the respiratory cycle-based trigger for the respiratory-gated mode. Respiratory gated-images were acquired at inspiration and end expiration, during a period of minimal respiration-induced organ motion. Gated images were acquired with a nominal isotropic voxel spacing of 44 microm in 20-25 min (80 kVp, 113 mAs, 300 ms imaging window per projection). The equivalent ungated acquisitions were 11 min in length. We observed improved definition of the diaphragm boundary and increased conspicuity of small structures within the lungs in the gated images, when compared to the ungated acquisitions. In this work, we have characterized the externally monitored respiratory wave form of free-breathing, anaesthetized rats and correlated the respiration-induced organ motion to the respiratory cycle. We have shown that the respiratory pressure wave form is an excellent surrogate for the radiographic organ motion. This information facilitates the definition of an imaging window at any phase of the breathing cycle. This approach for prospectively gated micro-CT can provide high quality images of anaesthetized free-breathing rodents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Innovative Methodology In vivo characterization of lung morphology and function in anesthetized free-breathing mice using micro-computed tomography

Ford NL, Martin EL, Lewis JF, Veldhuizen RA, Drangova M, Holdsworth DW. In vivo characterization of lung morphology and function in anesthetized free-breathing mice using micro-computed tomography. J Appl Physiol 102: 2046–2055, 2007. First published Janaury 25, 2007; doi:10.1152/japplphysiol.00629.2006.—Lung morphology and function in human subjects can be monitored with computed tomography (C...

متن کامل

In vivo characterization of lung morphology and function in anesthetized free-breathing mice using micro-computed tomography.

Lung morphology and function in human subjects can be monitored with computed tomography (CT). Because many human respiratory diseases are routinely modeled in rodents, a means of monitoring the changes in the structure and function of the rodent lung is desired. High-resolution images of the rodent lung can be attained with specialized micro-CT equipment, which provides a means of monitoring r...

متن کامل

A respiratory‐gated micro‐CT comparison of respiratory patterns in free‐breathing and mechanically ventilated rats

In this study, we aim to quantify the differences in lung metrics measured in free-breathing and mechanically ventilated rodents using respiratory-gated micro-computed tomography. Healthy male Sprague-Dawley rats were anesthetized with ketamine/xylazine and scanned with a retrospective respiratory gating protocol on a GE Locus Ultra micro-CT scanner. Each animal was scanned while free-breathing...

متن کامل

Delayed Contrast Enhancement Imaging of a Murine Model for Ischemia Reperfusion with Carbon Nanotube Micro-CT

We aim to demonstrate the application of free-breathing prospectively gated carbon nanotube (CNT) micro-CT by evaluating a myocardial infarction model with a delayed contrast enhancement technique. Evaluation of murine cardiac models using micro-CT imaging has historically been limited by extreme imaging requirements. Newly-developed CNT-based x-ray sources offer precise temporal resolution, al...

متن کامل

Optimization of Image Quality in Retrospective Respiratory-Gated Micro-CT for Quantitative Measurements of Lung Function in Free-Breathing Rats

Objective: To optimize scan time and X-ray dose with no loss of image quality for retrospectively-gated micro-CT scans of free-breathing rats. Methods: Five free-breathing rats were scanned using a dynamic micro-CT scanner over 10 continuous gantry rotations (50 seconds and entrance dose of 0.28 Gy). The in-phase projection views were selected and reconstructed, representing peak inspiration an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical physics

دوره 32 9  شماره 

صفحات  -

تاریخ انتشار 2005